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ABSTRACT

Speech enhancement algorithms based on deep learning have greatly
surpassed their traditional counterparts and are now being consid-
ered for the task of removing acoustic echo from hands-free com-
munication systems. This is a challenging problem due to both
real-world constraints like loudspeaker non-linearities, and to lim-
ited compute capabilities in some communication systems. In this
work, we propose a system combining a traditional acoustic echo
canceller, and a low-complexity joint residual echo and noise sup-
pressor based on a hybrid signal processing/deep neural network
(DSP/DNN) approach. We show that the proposed system outper-
forms both traditional and other neural approaches, while requiring
only 5.5% CPU for real-time operation. We further show that the
system can scale to even lower complexity levels.

Index Terms— acoustic echo cancellation, neural residual echo
suppression, speech enhancement

1. INTRODUCTION

In full-duplex communication applications, echo produced by the
acoustic feedback from the loudspeaker to the microphone can
severely degrade quality. Traditional acoustic echo cancellation
(AEC) aims at cancelling the acoustic echoes from the microphone
signal by filtering the far-end (loudspeaker) signal with the esti-
mated echo path modeled by an adaptive FIR filter, and subtracting
the resulting signal from the microphone signal [1, 2]. If the esti-
mated echo path is equal to the true echo path, echo is removed from
the microphone signal. In real-world applications, residual echo
remains at the output of AEC due to issues such as non-linearities
in the acoustic drivers, rapidly-varying acoustic environments, and
microphone noise. Hence, residual echo suppressors are typically
employed after the system identification-based AEC in order to meet
the requirements for high echo attenuation [3, 4, 5].

In addition, background noise also degrades the speech quality,
while limiting the ability of the AEC to adapt fast enough to track
acoustic path changes, further worsening the overall communication
quality. Traditional speech enhancement methods [6, 7] — sometimes
combined with acoustic echo suppression [8] — can help reduce the
effect of stationary noise, but have been mostly unable to remove
highly non-stationary noise. In recent years, deep-learning-based
speech enhancement systems have emerged as state-of-the-art solu-
tions [9, 10, 11, 12, 13]. Even more recently, deep-learning-based
residual echo suppression algorithms have also demonstrated state-
of-the-art performance [14, 15].

In this paper, we present an integrated approach to noise sup-
pression and echo control (Section 2) which abides to the idea of
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Fig. 1. Overview of the joint echo control and noise suppression sys-
tem. The far-end signal f (n) is played through the loudspeaker. The
microphone signal d (n) captures the reverberated near-end speech
but also some noise v (n), as well as echo z(n) from the loud-
speaker. The echo is partially cancelled by the adaptive filter h 7 to
produce y (n). The RES then enhances y (n) by suppressing noise,
reverberation, as well as the remaining echo, and produces the en-
hanced output & (n).

incorporating prior knowledge from physics and psychoacoustics to
design a low complexity but effective architecture. Since, the acous-
tic path between a loudspeaker and a microphone is well approx-
imated as a linear FIR filter, we retain the traditional frequency-
domain acoustic echo canceller (AEC) described in Section 3. We
combine the adaptive filter with a perceptually-motivated joint noise
and echo suppression algorithm (Section 4). As in [16], we focus on
restoring the spectral envelope and the periodicity of the speech. Our
model is trained (Section 5) to enhance the speech from the AEC us-
ing the far-end signal as side information to help remove the far-end
signal while denoising the near-end speech. Results from our experi-
ments and from the Acoustic Echo Cancellation Challenge [17] show
that the proposed algorithm outperforms both traditional and other
neural approaches to residual echo suppression, taking first place in
the challenge (Section 6).

2. SIGNAL MODEL

The signal model we consider in this work is shown in Fig. 1. Let
x (n) be a clean speech signal. The signal captured by a hands-free
microphone in a noisy room is given by

d(n)=xz(n)xhys+v(n)+2z(n), (1)

where v (n) is the additive noise from the room, z (n) is the echo
caused by a far-end signal f (n), h, is the impulse response from
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Fig. 2. Overview of the PercepNet joint noise and residual echo
SUppressor.

the talker to the microphone, and x denotes the convolution. When
ignoring non-linear effects, the echo signal can be expressed as
z(n) = f(n) = hy. Echo cancellation based on adaptive filtering
consists in estimating h; and subtracting the estimated echo 2 (n)
from the microphone signal to produce the echo-cancelled signal
y (n). Unfortunately, the echo cancellation process is generally
imperfect and echo remains in y (n). For this reason, we include a
joint residual echo suppression (RES) and noise suppression (NS)
algorithm (RES block in Fig. 1) such that the enhanced output Z (n)
is perceptually as close as possible to the ideal clean speech z (n).

3. ADAPTIVE FILTER

The adaptive filter component in Fig. 1 is derived from the Spe-
exDSP' implementation of the multidelay block frequency-domain
(MDF) adaptive filter [18] algorithm. Robustness to double-talk is
achieved through a combination of the learning rate control in [19]
and a two-echo-path model as described in [20]. Moreover, a block
variant of the PNLMS algorithm [21] is used to speed up adapta-
tion. As a compromise between complexity and convergence, we
use a variant of AUMDF [18] where most blocks are alternatively
constrained, but the highest-energy block is constrained on each it-
eration.

There is sometimes an unknown delay between the signal f (n)
sent to the loudspeaker and the corresponding echo appearing at the
microphone. To estimate that delay D, we run a second AEC with
a 400-ms filter and find the peak in the estimated filter. The delay-
estimating AEC operates on a down-sampled version of the signals
(8 kHz) to reduce complexity. We use the delayed far-end signal
f (n — D) to perform the final echo cancellation at 16 kHz. We use
a frame size of 10 ms, which matches the frame size used in the RES
and avoids causing any extra delay.

The length of the adaptive filter affects not only the complexity,
but also the convergence time and the steady-state accuracy of the
filter. We have found that a 150-ms filter provides a good compro-
mise, ensuring that the echo loudness is sufficiently reduced for the
RES to correctly preserve double-talk. We do not make any attempt
at cancelling non-linear distortion in the echo.

https://gitlab.xiph.org/xiph/speexdsp/

4. RESIDUAL ECHO SUPPRESSION

The linear AEC output y (n) contains the near-end speech = (n), the
near-end noise v (n), as well as some residual echo z (n) — 2 (n).
The residual echo component includes

e misalignment (or divergence) of the estimated filter h 7
e non-linear distortion caused by the loudspeaker
e late reverberation beyond the impulse response of h f

Unlike the problem of noise suppression, residual echo suppression
involves isolating a speech signal from another speech signal. Since
the echo can sometimes be indistinguishable from the near-end
speech, additional information is required for neural echo suppres-
sion to work reliably. While there are multiple ways to provide
information about the echo, we have found that using the far-end
signal f (n) is both the simplest and the most effective way. Specif-
ically, since f (n) does not depend on the AEC behaviour, conver-
gence problems with the echo canceller are less likely to affect the
RES performance. Similarly, we found that using the delayed signal
f (n — D) leads to slightly poorer results — most likely due to the
few cases where delay estimation fails.

We implement joint RES and NS using the PercepNet algo-
rithm [16], which is based on two main ideas:

e scaling the energy of perceptually-spaced spectral bands to
match that of the near-end speech;

e using a multi-tap comb filter at the pitch frequency to remove
noise between harmonics and match the periodicity of the
near-end speech.

Let Y}, (£) be the magnitude of the AEC output signal y (n) in band b
for frame ¢ and X, (¢) be similarly defined for the clean speech
x (n), the ideal gain that should be applied to that band is:
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Applying the gain gp (¢) to the magnitude spectrum in band b re-
sults in an enhanced signal that has the same spectral envelope as
the clean speech. While this is generally sufficient for unvoiced seg-
ments, voiced segment are likely have a higher roughness than the
clean speech. This is due to noise between harmonics reducing the
perceived periodicity/voicing of the speech. The noise is particularly
perceptible due to the fact that tones have relatively little masking ef-
fect on noise [22]. In that situation, we use a non-causal comb filter
to remove the noise between the pitch harmonics and make the sig-
nal more periodic. The comb filter is controlled by strength/mixing
parameters 7, (£), where 1, (£) = 0 causes no filtering to occur and
7y (£) = 1 causes the band to be replaced by the comb-filtered ver-
sion, maximizing periodicity. In cases where even 7, (¢) = 1 is in-
sufficient to make the noise inaudible, a further attenuation gém) )
is applied (Section 3 of [16]).

Fig. 2 shows an overview of the RES algorithm. The short-time
Fourier transform (STFT) spectrum is divided into 32 triangu-
lar bands following the equivalent rectangular bandwidth (ERB)
scale [23]. The features computed from the input and far-end speech
signals are used by a deep neural network (DNN) to estimate the
gains g, (£) and filtering strengths 7, (¢) to use. The output gains
gv (£) are further modified by an envelope postfilter (Section 5
of [16]) that reduces the perceptual impact of the remaining noise in
each band.
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Fig. 3. Overview of the DNN architecture computing the 32 gains g
and 32 strengths 7 from the 100-dimensional input feature vector f.
The number of units on each layer is indicated above the layer type.

5. DNN MODEL

The model uses two convolutional layers (a 1x5 layer followed by
a 1x3 layer), and five GRU [24] layers, as shown in Fig. 3. The con-
volutional layers are aligned in time such as to use up to M frames
into the future. In order to achieve the 40 ms algorithmic delay al-
lowed by the challenge [17], including the 10-ms frame size and the
10-ms overlap, we have M = 2.

The input features used by the model are tied to the 32 bands we
use. For each band, we use three features:

1. the energy in the band with look-ahead Y}, (¢ + M)

2. the pitch coherence [16] without look-ahead gy, (€) (the co-
herence estimation itself uses the full look-ahead), and

3. the energy of the far-end band with look-ahead F}, (¢ + M)

In addition to those 96 band-related features, we use four extra scalar
features (for a total of 100 input features):

e the pitch period T" (),
e an estimate of the pitch correlation with look-ahead,
e a non-stationarity estimate, and

o the ratio of the Li-norm to the La-norm of the excitation
computed from y (n).
For each band b, we have 2 outputs: the gain gy, (¢) approximates
géatt) (£) g» (£) and the strength 7, (£) approximates 3 (£).

The 8M weights in the model are forced to a i% range and
quantized to 8-bit integers. This reduces the total memory require-
ment (and cache bandwidth), while also reducing the computational
complexity of the inference when taking advantage of vectorization
(more operations for the same register width).

5.1. Sparse model

In some situations, it is desirable to further reduce the complexity
of the model. While it is always possible to reduce the number
of units in each layer, it has recently been found that using sparse
weight matrices (i.e. sparse network connections) can lead to bet-
ter results [25, 26]. Since modern CPUs make heavy use of single
instruction, multiple data (SIMD) hardware, it is important for the
algorithm to allow vectorization. For that reason, we use structured
sparsity — where whole sub-blocks of matrices are chosen to be ei-
ther zero or non-zero — implemented in a similar way to [27, 28].
In this work, we use 16x4 sub-blocks. All fully-connected layers,

as well as the first convolutional layer are kept dense (no sparsity).
The second convolutional layer is 50% dense, and the GRUs use dif-
ferent levels of sparsity for the different gates. The matrices that
compute the new state have a density of 40%, whereas the update
gate matrices are 20% dense and the reset gate matrices have only
10% density. This reflects the unequal usefulness of the different
gates on recurrent units.

The resulting sparse model has 2.1M non-zero weights, or 25%
of the size of the full model. We also consider an even lower com-
plexity model with the same density but layers limited to 256 units,
resulting in 800k non-zero weights, or 10% of the full model size.
When training sparse models, we use the sparsification schedule pro-
posed in [26].

5.2. Training

We train the model on synthetic mixtures of clean speech, noise and
echo that attempt to recreate real-world conditions, including rever-
beration. We vary the signal-to-noise ratio (SNR) from -15 dB to 45
dB (with some noise-free examples included), and the echo-to-near-
end ratio is between -15 dB and 35 dB. We use 120 hours of clean
speech data along with 80 hours of various noise types. Most of the
data is sampled at 48 kHz, but some of it — including the far-end
single-talk data provided by the challenge organizers — is sampled at
16 kHz. We use both synthetic and real room impulse responses for
the augmentation process.

In typical conditions, the effect of the room acoustics on the
near-end speech, the echo, and the noise is similar, but not identical.
This is due to the fact that while all three occur in the same room
(same RTgp), they can be in different locations and — especially —
at different distances. For that reason, we pick only one room im-
pulse response for each condition, but scale the early reflections (first
20 ms) with a gain varying between 0.5 and 1.5 to simulate the dis-
tance changing. Inspired by [29], the target signal includes the early
reflections as well as an attenuated echo tail (with RTso = 200 ms)
so that late reverberation is attenuated to match the acoustics of a
small room.

We improve the generalization of the model by using various
filtering augmentation methods [30, 16]. That includes applying a
low-pass filter with a random cutoff frequency, making it possible to
use the same model on narrowband to fullband audio.

The loss function used for the gain attempts to match human per-
ception as closely as possible. For this reason we use the following
loss function for the gain estimations:
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where v = 0.3 is the generally agreed-upon exponent to convert
acoustic power to the sone scale for perceived loudness [23]. The
purpose of the denominator in (4) is to over-emphasize the loss
when completely attenuating speech or when letting through small
amounts of noise/echo during silence. We use \s = 10 for the
second term of (3), an L4 term that over-emphasizes large errors in
general. We use the same loss function as [16] for 7.



Table 1. AEC Challenge official results: P.808 MOS of near-end
single-talk, P.831 Echo DMOS for far-end single-talk, P.8§31 Echo
DMOS for double-talk, P.831 other degradations DMOS of double-
talk. The baseline model is provided by the challenge organizers.
As a comparison, we also include the mean of the four algorithms
statistically tied in second place.

Algorithm ST ST DT DT Mean
NE FE Echo Other

Baseline 379 384 384 328 3.68

274 place 380 4.18 425 374 3.99

PercepNet 3.85 4.19 434 4.07 4.11
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Fig. 4. P.808 MOS results as a function of complexity. The 95%
confidence interval is 0.05.

6. EXPERIMENTS AND RESULTS

The complexity of the proposed RES with the largest (non-sparse)
model is dominated by the 800M multiply-accumulate operations
per second required to compute the contribution of all 8M weights on
100 frames per second. The RES thus requires 4.6% of an x86 mo-
bile CPU core (Intel i7-8565U) to operate in real-time. When com-
bined with the AEC, the total complexity of the proposed 16 kHz
echo control solution as submitted to the AEC challenge [17] is
5.5% CPU (0.55 ms per 10-ms frame). Since the RES is already
designed to operate at 48 kHz, the total cost of fullband echo control
only increases to 6.6%, with the difference due to the increased AEC
sampling rate.

The AEC challenge organizers evaluated blind test samples pro-
cessed with the above AEC, followed by the PercepNet-based RES.
The mean opinion score (MOS) [31, 32] results were obtained us-
ing the crowdsourcing methodology described in P.808 [33]. The
test set includes 1000 real recordings. Each utterance was rated by
10 listeners, leading to a 95% confidence interval of 0.01 MOS for
all algorithms. The proposed algorithm significantly out-performs
the ResRNN baseline, as shown in Table 1, and ranked in first place
among the 17 submissions to the challenge. An interesting observa-
tion is that although the proposed algorithm performs well over all
the metrics, the improvement over the other submitted algorithms is
particularly noticeable for the “DT Other” metric, which measures
the degradation caused to the near-end speech during double-talk
conditions.
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Fig. 5. Median ERLE* on the far-end single-talk cases as a function
of complexity.

In addition to the official challenge experiments, we conducted
further experiments on the challenge blind test set. Those exper-
iments were all conducted after the submission deadline so as to
not influence the model to be submitted. We compared the qual-
ity obtained with lower complexity versions of the proposed algo-
rithm (Section 5.1). More specifically, the three RES model sizes
were each evaluated with and without a linear AEC in front. In addi-
tion, the AEC alone (no RES) was evaluated, along with the AEC
followed by the SpeexDSP conventional joint RES and NS. The
MOS results from all 600 utterances that include near-end speech
(i.e. excluding far-end single-talk samples) are shown in Fig. 4.
They demonstrate that the PercepNet-based RES significantly out-
performs the SpeexDSP conventional RES, even when used as a pure
echo suppressor (except for the lowest complexity setting). Despite
the good double-talk performance when operated as a residual echo
suppressor, the results demonstrate the benefits of using the adaptive
filter component.

The far-end single-talk samples are evaluated based on a mod-
ified echo return loss enhancement (denoted ERLE*) metric where
both noise and echo are considered. Since the RES is meant to re-
move all energy from those samples, we simply find the ratio of
the input energy to the output energy. The results in Fig. 5 show
that all PercepNet-based algorithms remove far more echo and noise
than the conventional approach. Combined with Fig. 4, these results
confirm that the linear AEC does not help attenuating isolated (far-
end-only) echo, but greatly contributes to preserving speech during
double-talk.

7. CONCLUSION

We demonstrate an integrated algorithm for echo and noise suppres-
sion in hands-free communication systems. The proposed solution,
based on the PercepNet model, incorporates perceptual aspects of
human speech in a hybrid DSP/deep learning approach. Evaluation
results show significant quality improvements over both traditional
and other neural echo control algorithms while using only 5.5% of
a CPU core. We further evaluate the impact of the model size on
quality down to 1.5% CPU. We believe these results demonstrate the
benefits of modeling speech using perceptually-relevant parameters
in an echo control task.
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