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ABSTRACT

Robustness to packet loss is one of the main ongoing challenges
in real-time speech communication. Deep packet loss concealment
(PLC) techniques have recently demonstrated improved quality
compared to traditional PLC. Despite that, all PLC techniques hit
fundamental limitations when too much acoustic information is lost.
To reduce losses in the first place, data is commonly sent multiple
times using various redundancy mechanisms. We propose a neural
speech coder specifically optimized to transmit a large amount of
overlapping redundancy at a very low bitrate, up to 50x redundancy
using less than 32 kb/s. Results show that the proposed redundancy
is more effective than the existing Opus codec redundancy, and that
the two can be combined for even greater robustness.

Index Terms— neural speech coding, audio redundancy, varia-
tional autoencoder

1. INTRODUCTION

In the past few years, deep neural network techniques have sig-
nificantly improved the state of the art in speech processing. In
particular, neural speech coding has significantly increased the qual-
ity of very low bitrate speech transmission [1, 2, 3]. Recently,
the Interspeech 2022 Audio Deep Packet Loss Concealment (PLC)
Challenge [4] demonstrated that neural techniques can improve over
classical concealment techniques, paving the way for more reliable
speech transmission over the Internet. At the same time, no matter
how advanced, PLC techniques are fundamentally limited in their
ability to conceal losses since they cannot (and should not) predict
missing phonemes/words.

A well-known method for further increasing loss robustness over
packet networks is to transmit redundant audio data (RED) [5]. The
Opus codec [6] defines a low-bitrate redundancy (LBRR) option to
reduce the cost of redundancy by including in each packet a lower
bit-rate copy of the previous packet’s contents. Variants and combi-
nations of these methods have been investigated, but there are limits
to how far these can scale given that significantly increasing the bi-
trate can lead to more losses.

In this work, we propose a deep redundancy (DRED) mecha-
nism based on speech coding techniques specifically optimized for
coding redundant audio information. Efficiency is achieved by us-
ing a continuously-operating recurrent encoder with a decoder run-
ning backward in time (Section 2). Our approach is based on a rate-
distortion-optimized variational autoencoder (RDO-VAE) that quan-
tizes a Laplace-distributed latent space (Section 3). Whereas typical
wideband speech might be transmitted at 24 kb/s with an additional
16 kb/s to provide one frame of redundancy, we demonstrate that

DRED is capable of encoding up to 1 second of redundancy in each
20-ms packet (i.e., 50x redundancy) by adding a total of only 31 kb/s.
Results in Section 4 show that the proposed approach significantly
improves loss robustness, in a way that effectively complements tra-
ditional redundancy coding methods.

2. DEEP REDUNDANCY (DRED) OVERVIEW

Most speech codecs in use today encode audio in 20-ms frames, with
each frame typically being sent in a separate packet over the Internet.
When any packet is lost, the corresponding audio is lost and has
to be filled by a PLC algorithm. The Opus LBRR option makes it
possible for packet number n to include the contents of both frames
n and n− 1, with the latter being encoded at a slightly lower bitrate.
Effectively, packets each contains 40-ms of audio despite being sent
at a 20-ms interval. When LBRR is enabled, a single packet loss
does not cause any audio frame to be completely lost, which can
improve the quality in difficult network conditions. Unfortunately,
losses are rarely uniformly distributed, and LBRR has limited impact
on long loss bursts. While more frames could be coded as part of
each packet, it would cause the bitrate to go up significantly. For that
reason, we propose an efficient neural coding technique that makes
it possible to include a large amount of redundancy without a large
increase in bitrate.

The signal-level architecture for the proposed redundancy cod-
ing is derived from our previous work on packet loss concealment,
where a vocoder is used to fill in the missing frames using acous-
tic features produced by a predictor (Section 4.3 of [7]). In this
work, we replace the acoustic feature predictor by an encoder and
decoder that transmit a lossy approximation of the ground-truth fea-
tures. Although we only discuss redundant audio coding here, our
architecture makes it easy to integrate redundancy coding with PLC.

2.1. Constraints and hypotheses

Since the purpose of this work is to improve robustness to packet
loss, an obvious constraint is to avoid any prediction across differ-
ent packets. That being said, within each packet, any amount of
prediction is allowed since we assume that a packet either arrives
uncorrupted, or does not arrive at all. Additionally, since the same
frame information is encoded in multiple packets, we do not wish to
re-encode each packet from scratch, but rather have a continuously-
running encoder from which we extract overlapping encoded frames.
On the decoder side, since short losses are more likely than very long
ones, it is desirable to be able to decode only the last few frames of
speech without having to decode the entire packet.
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Fig. 1. Overview of the encoding and decoding process. For each
20-ms frame, the encoder processes two 10-ms feature vectors and
produces an encoded latent vector (shown in orange or blue), as well
as an initial state (IS). Although latent vectors are produced every
20 ms, they each contain sufficient information to reconstruct 40 ms
of audio. The encoded stream is split into overlapping redundancy
packets. Each packet to be sent contains a single IS (for the latest
frame), as well as half of the latent vectors (even or odd) spanning
the desired redundancy duration.

To maximize efficiency, we can take advantage of (variable-
length) entropy coding. Even if a constant bitrate was ultimately
desired, that could easily be achieved by varying the duration of the
redundancy. At last, we can also take advantage of variable encoding
quality as a function of the timestamp within the redundant packet.
After all, more recent packets are expected to be used more often, so
they deserve to be coded at a higher quality.

Although there are many different types of neural vocoders, we
propose to use an auto-regressive vocoder, as it allows for seamless
transitions between regular coded audio and low-bitrate redundant
audio without the use of cross-fading. Although in this work we
use LPCNet [8] due to its low complexity, any other auto-regressive
vocoder would also be applicable.

2.2. Proposed architecture

There are generally two methods for improving coding efficiency:
prediction and transforms. The proposed algorithm leverages both
methods. In the context of neural coding, grouping input feature
vectors together enables the encoder to infer an efficient non-linear
transform of its input. For prediction, we use a recurrent neural
network (RNN) architecture, but to achieve the computational goals
listed above, we make the encoder RNN run forward in a continuous
manner, while making the decoder RNN run backward in time, from
the most recent packet encoded. To ensure that the decoder achieves
sufficient quality on the first (most recent) packet, the encoder also
codes an initial state (IS). Although the encoder needs to produce
such an IS on every frame, only one is included in each redundancy
packet.

Even though our network operates on 20-ms frames, the un-
derlying 20-dimensional LPCNet feature vectors are computed on
a 10-ms interval. For that reason we group feature vectors in pairs –
equivalent to a 20-ms non-linear transform. To further increase the
effective transform size while still producing a redundancy packet
every 20 ms, we use an output stride. The process is illustrated for
a stride of 2 in Fig. 1 – resulting in each output vector representing
40 ms of speech – but it can easily scale to larger strides.
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Fig. 2. Encoding and decoding process. The encoder produces latent
vectors and initial states from LPCNet features. The vectors are split
into overlapping redundancy packets and then quantized using a vari-
able resolution (the same vector can be quantized at different rates
depending on its position). At the receiver, the redundancy packets
are entropy-decoded and scaled back (unquantized) to recover the
latent vectors. Those are then decoded to produce 10-ms LPCNet
feature vectors that can be used to synthesize audio in place of the
missing Opus packets. The redundancy decoding process happens
only on-demand such that no computation occurs when there is no
loss.

3. RATE-DISTORTION-OPTIMIZED VAE

As stated above, our goal is to compress each redundancy packet
as efficiently as possible. Although VQ-VAE [9] has been a popu-
lar choice for neural speech coding [10, 11], in this work we avoid
its large fixed-size codebooks and investigate other variational auto-
encoders (VAE) [12]. Our approach is instead inspired from recent
work in VAE-based image coding [13, 14] combining scalar quanti-
zation with entropy coding.

We propose a rate-distortion-optimized VAE (RDO-VAE) that
directly minimizes a rate-distortion loss function. From a sequence
of input vectors x ∈ RL, the RDO-VAE produces an output x̃ ∈ RL
by going through a sequence of quantized latent vectors zq ∈ ZM ,
minimizing the loss function

L = D (x̃,x) + λH (zq) , (1)

where D (·, ·) is the distortion loss, and H (·) denotes the entropy.
The Lagrange multiplier λ effectively controls the target rate, with
a higher value leading to a lower rate. The high-level encoding and
decoding process is illustrated in Fig. 2.

Because the latent vectors zq are quantized, neither D (·, ·) nor
H (·) in (1) are differentiable. For the distortion, a common way
around the problem is to use the straight-through estimator [9, 15].
More recently, various combinations involving “soft” quantization
– through the addition of uniformly distributed noise – have been
shown to produce better results [13, 14]. In this work, we choose to
use a weighted average of the soft and straight-through (hard quan-
tization) distortions.



3.1. Rate Estimator

We use the Laplace distribution to model the latent space because
it is easy to manipulate and is relatively robust to probability mod-
eling mismatches. Since we can consider the rate of each variable
independently, let ze and zq represent one component of the unquan-
tized (ze) and quantized (zq) vectors, respectively. The continuous
Laplace distribution is given by:

p (ze) = −
log r

2
r|ze| , (2)

where r is related to the standard deviation σ by r = e−
√
2/σ .

An efficient way of quantizing a Laplace-distributed vari-
able [16] is to use a fixed quantization step size, except around
zero, where all values of qe ∈ ]−θ, θ[ quantize to zero, with θ > 1

2
arising from rate-distortion optimization. We describe a quantizer
with a step size of one without loss of generality, since we can
always scale the input and output to achieve the desired quantization
resolution. We thus define the quantizer as:

zq = Qθ (ze) = sgn (ze) bmax (|ze|+ 1− θ, 0)c , (3)

where sgn (·) denotes the sign function. In the special case θ = 1/2,
we simply round to the nearest integer (ignoring ties).

The discrete pdf of a quantized Laplace distribution is

P (zq) =

{
1− rθ zq = 0
1
2
(1− r) r|zq|+θ−1 zq 6= 0

. (4)

Since its entropy, H (zq) = E [− log2 P (zq)], is not differentiable
with respect to ze, we must find a way to backpropagate the gradient.
We find that using the straight-through estimator for the rate results
in very poor convergence, with the training loss starting to increase
again after a few epochs due to the mismatch between the forward
and backward pass of backpropagation.

We seek to use a differentiable rate estimation on the unquan-
tized encoder output. An obvious choice is to use the differential
entropy h (ze) = E [− log2 p (ze)], which achieves better conver-
gence. Unfortunately, the differential entropy tends towards −∞
when p (ze) becomes degenerate as r → 0, which can cause many
low-variance latent variables to collapse to zero. Instead, we use the
continuous ze with the entropy of the discrete distribution H (ze) =
E [− log2 P (ze)]. We further simplify the rate estimate by selecting
the implicit threshold value θ = logr (2r/ (1 + r)), chosen such
that ze = 0 is no longer a special case, resulting in

H (ze) = − log2
1− r
1 + r

− E [|ze|] log2 r . (5)

In the degenerate case where r → 0 (and thus ze = 0), we have
H (ze) = 0, which is the desired behavior. An advantage of us-
ing (5) is that any latent dimension that does not sufficiently reduce
the distortion to be “worth” its rate naturally becomes degenerate
during training. We can thus start with more latent dimensions than
needed and let the model decide on the number of useful dimensions.
In practice, we find that different values of λ result in a different
number of non-degenerate pdfs.

3.2. Quantization and Encoding

The dead zone, as defined by the quantizer Qθ (z) in (3), needs to
be differentiable with respect to both its input parameter z and its

width θ. That can be achieved by implementing it as the differen-
tiable function

ζ (z) = z − δ tanh z

δ + ε
, (6)

where δ ≈ θ − 1/2 controls the width of the dead zone and ε = 0.1
avoids training instabilities. The complete quantization process thus
becomes

zq = bζ (qλ · ze)e , (7)

where b·e denotes rounding to the nearest integer, and qλ is the quan-
tizer scale (higher qλ leads to higher quality). The quantizer scale qλ
is learned independently as an embedding matrix for each dimension
of the latent space and for each value of the rate-control parameter λ.

The quantized latent components zq can be entropy-coded [17]
using the discrete pdf in (4) parameterized by r and θ. The value of
θ is learned independently of the quantizer dead-zone parameter δ.
Also, we learn a different r parameter for the soft and hard quantiz-
ers. The value of θ for the soft quantizer is implicit and thus does not
need to be learned, although a learned θ does not lead to significant
rate reduction, which is evidence that the implicit θ is close to the
RD-optimal choice.

On the decoder side, the quantized latent vectors are entropy-
decoded and the scaling is undone:

zd = q−1
λ · zq . (8)

At last, we need to quantize the IS vector s to be used by the
decoder. Although the encoder produces an IS at every frame, only
one IS per redundancy packet needs to be transmitted. Because the
IS represents only a small fraction of the information transmitted, we
transmit it at a fixed bitrate. We constrain the IS to unit-norm and
use an algebraic variant of VQ-VAE based on the pyramid vector
quantizer (PVQ) [18], with a spherical codebook defined as

SN,K =

{
p

‖p‖ : p ∈ ZN and

N−1∑
i=0

|pi| = K

}
, (9)

where N is the dimensionality of the IS and K determines the size
(and the rate) of the codebook. The size of codebook SN,K is
given by the recurrent expression VN,K = VN−1,K + VN,K−1 +
VN−1,K−1, with V0,K = 0 for K > 0 and VN,0 = 1. We use a
straight-through gradient estimator for PVQ-VAE training.

3.3. Training

During training, we vary λ in such a way as to obtain average
rates between 15 and 85 bits per vector. We split the λ range into
16 equally-spaced intervals in the log domain. For each interval,
we learn independent values for q, δ, θ, as well as for the hard and
soft versions of the Laplace parameter r. To avoid giving too much
weight to the low-bitrate cases because of the large λ values, we
reduce the difference in losses by weighting the total loss values by
1/
√
λ:

L =
D (x̃,x)√

λ
+
√
λ

M−1∑
i=0

H
(
z(i)e ; r(i)s

)
. (10)

The loss functionD (·, ·) combines mean squared error (MSE) terms
for the cepstrum and pitch correlation and an absolute error (L1)
term for the log-domain pitch.

The large overlap between decoded sequences poses a challenge
for the training. Running a large number of overlapping decoders
would be computationally challenging. On the other hand, we find
that decoding the entire sequence produced by the encoder with a



single decoder leads to the model over-fitting to that particular case.
We find that encoding 4-second sequences and splitting them into
four non-overlapping sequences to be independently decoded leads
to acceptable performance and training time.

4. EXPERIMENTS & RESULTS

Both the RDO-VAE and the LPCNet vocoder are trained indepen-
dently on 205 hours of 16-kHz speech from a combination of TTS
datasets [19, 20, 21, 22, 23, 24, 25, 26, 27] including more than
900 speakers in 34 languages and dialects. The vocoder training is
performed as described in [28], except that we explicitly randomize
the sign of each training sequence so that the algorithm works for
any polarity of the speech signal.

The encoder and decoder networks each consist of 3 gated re-
current unit (GRU) [29] layers, mixed with 6 fully-connected layers
and a concatenation skip layer at the end. Each layers has 256 units.
We train the RDO-VAE with M = 80 initial latent dimensions, and
observe that between 14 and 29 dimensions (depending on bitrate)
are ultimately non-degenerate (r > 0.001).

We evaluate the proposed neural redundancy mechanism on
speech compressed with the Opus codec at 24 kb/s, making the
conditions comparable to those occurring on a call over WebRTC.
We add 1.04 seconds of neural redundancy in each 20-ms frame
transmitted, so that 52 copies of every frame are ultimately trans-
mitted (concealing burst losses up to 1.02 seconds). We vary the
rate within each redundancy packet such that the average rates are
around 750 b/s for the most recent frame and 375 b/s for the old-
est. The average rate over all frames is about 500 b/s, to which we
add log2 VN,K = 96 bits for the PVQ quantized state (N = 24,
K = 82), resulting in about 620 bits of redundancy per frame, or
31 kb/s of total redundancy.

A real-time C implementation of an updated DRED version
operating within the Opus codec is available under an open-
source license at https://gitlab.xiph.org/xiph/opus in the
exp dred icassp branch.

4.1. Complexity

The neural encoder and decoder each have about 2 million weights.
The encoder uses each weight once (multiply-add) for each 20-ms
frame, resulting in a complexity of 0.2 GFLOPS. The decoder’s
complexity varies depending on the loss pattern, but can never av-
erage more than one step every 40 ms. That results in a worst-case
average decoder complexity of 0.1 GFLOPS, although unlike the
case of the encoder, the decoder complexity can have bursts. On the
receiver side, the complexity will nonetheless be dominated by the
LPCNet vocoder’s 4 GFLOPS complexity.

4.2. Quality

We evaluated DRED on the PLC Challenge dataset [4], using the
development test set files for both the audio and the recorded packet
loss sequences (18.4% average loss rate). The sequences have loss
ranging from 20 ms to bursts of up to one second, meaning that the
redundancy is able to cover all losses without the need for regular
PLC. We compare with the neural PLC results obtained in [7] (no
redundancy), as well as with the original Opus LBRR1, both alone
(requiring PLC) and combined with DRED (the first DRED frame

1The total bitrate is increased to 40 kb/s to make room for LBRR, which
averages about 16 kb/s.
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Fig. 3. MOS results, including the 95% confidence intervals. All
differences are statistically significant.

becomes unused). We also include an upper bound where DRED
is applied with uncompressed features. We include as anchors both
clean/lossless samples and samples where losses are replaced with
zeros.

The mean opinion score (MOS) [30] results in Table 3 were ob-
tained using the crowdsourcing methodology described in P.808 [31,
32], where each of the 966 test utterances was evaluated by 15 randomly-
selected naive listeners. Listeners were asked to rate samples on an
absolute category rating scale from 1 (bad) to 5 (excellent). The
results show that DRED significantly outperforms both neural PLC
and the existing Opus LBRR. Despite the very low bitrate used for
the redundancy, the performance is already close to the uncom-
pressed upper bound, suggesting that the vocoder may already be
the performance bottleneck. We also note that LBRR and DRED
appear to be complementary, with LBRR being more efficient for
short losses and DRED handling long losses.

5. CONCLUSION

We demonstrate that large amounts of audio redundancy can be
efficiently encoded at low bitrate to significantly improve the ro-
bustness of a communication system to packet loss. We use a
recurrent rate-distortion-optimized VAE to compute and quantize
Laplace-distributed latent vectors on a 40-ms interval and transmit
overlapping segments of redundancy to the receiver. Results show
that the proposed redundancy is more effective than the existing
Opus codec redundancy, and that the two can be combined for even
greater robustness. As with the Opus LBRR, taking advantage of
the proposed DRED requires adaptively increasing the jitter buffer
delay. Making optimal trade-offs between loss robustness and delay
is still an open question left to be resolved.
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[29] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder
approaches,” in Proceedings of Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, 2014.

[30] ITU-T, Recommendation P.800: Methods for subjective deter-
mination of transmission quality, 1996.

[31] ITU-T, Recommendation P.808: Subjective evaluation of
speech quality with a crowdsourcing approach, 2018.

[32] B. Naderi and R. Cutler, “An open source implementation of
ITU-T recommendation P.808 with validation,” in Proc. IN-
TERSPEECH, 2020.

https://tools.ietf.org/html/rfc2198
https://tools.ietf.org/html/rfc2198
https://tools.ietf.org/html/rfc6716
https://tools.ietf.org/html/rfc6716

